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ELASTIC

ordering occurs on cooling the crystal below the lambda
temperature. In NHyBr the situation is reversed; on
cooling there is an anomalous lattice expansion® as the
bromide crystal undergoes the transition to the ordered
tetragonal form. These volume changes associated with
changes in ordering make it easy to follow the transition
temperatures as a function of applied pressure. Steven-
son'® has obtained the phase diagrams of ammonium
chloride, bromide and iodide. His phase diagram for
ammonium bromide is reproduced in Fig. 2. (The region
encompassed by the sloping lines labeled V; to V7 in
this figure indicates the region of the phase diagram
studied in the present investigation.) The 8, v, and &
phases correspond to the structures disordered cubic
(CsCl), antiparallel ordered tetragonal and parallel
ordered cubic (CsCl), respectively. An « phase corre-
sponding to a disordered NaCl-type cubic structure
occurs at high temperatures but is not shown here.
There is also a very pronounced hysteresis associated
with the y—8 order—order transition at 1 atm, which is
not shown in this figure.

The present paper reports on a variety of ultrasonic
velocity measurements which have been made on
single-crystal ammonium bromide. Both longitudinal
and transverse waves were studied over a wide range
of pressure (0 to 12 kbar) at several constant tempera-
tures in the range 255°-315°K. These data all pertain
to the disordered phase away from any transition line,
and should provide a clear example of the “normal”
behavior of a CsCl-type ammonium halide free from
any effects due to ordering. Velocity measurements
have also been made as a function of temperature at
1 atm, although data could be obtained below the
lambda temperature (234.5°K) only for the transverse
wave associated with ¢y

This investigation is closely related to previous
studies'*? of the elastic constants of ammonium chloride
as functions of temperature and pressure. These studics
show that the shear elastic constants for ammonium
chloride (especially ¢q4) varied almost linearly with the
volume. Since the volumes of ammonium chloride and
bromide vary in an opposite manner at the lambda
temperature, we would expect that ¢y should also vary
in an opposite manner. For ammonium chloride, cy
increases markedly as the temperature is lowered
through the transition; therefore cy for the bromide
would be expected to decrease.

The results presented below are given in terms of
the variation of the three adiabatic elastic constants ¢y,
¢y, €', which can be obtained directly from the experi-
mental sound velocities, Third-order elastic constants
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I'16. 2. Phase diagram for NHBr. The g8 phase corresponds
to a disordered, CsCl-type cubic phase; the ¥ phase to an (anti-
parallel) ordered tetragonal phase; the é phase to a (parallel)
ordered, CsCl-type cubic phase. The vertical bars represent
transition points as determined by the static volume measure-
ments of Stevenson (Ref. 10). The set of sloping lines labeled
1"y through V7 represent isochores at various volumes.

are not used, and for pressures above 1 atm the quan-
tities cu, ¢y, and C* are “effective” elastic constants.!s
The relations between the ultrasonic velocities and the
elastic constants of a cubic crystal are well known:

Propagation in the [100] direction
(1)
(2)

where p is the mass density of the crystal, U, is the
velocity of the longitudinal sound wave, and U, is the
velocity of a transverse wave polarized in any direction
perpendicular to the [100] axis.

611=PUIZ,

cs=pU2,

Propagation in the [1107] direction
C'= ((11“(712) /2 =pU?
cntcaa— CI=PUL'2,

(3)
(4)

where Uy is the velocity of the longitudinal wave and
Ui is the velocity of a transverse wave polarized
perpendicular to the [001] axis. Values of U, were
measured only at 1 atm from 250° to 300°K as a check
on the internal consistency of the data.

Since the crystal structure of ammonium bromide
changes from cubic to tetragonal below the S~y lambda
transition, one must consider the effect of this symmetry
change on the clastic constants of a crystalline sample.
The tetragonal axis a; is now not equivalent to the
other axes, and therefore cg7cn, ¢, and ces7cas
in the low-temperature phase. Since data were obtained
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